The Artin-Rees Lemma + Knull intersection

Let R be a ring and I an ideal. Define the ring

$$R^* := R \oplus I \oplus I^2 \oplus ...$$
 (Mike will tell us more about this
object in his presentation.)

is naturally a graded R^* -module. We will use this module to prove an important fact about ideals. First we need the following:

Pf: If M^* is f.g., then the generators are contained in the first n terms, some n. Thus, $M_n \oplus M_{n+1} \oplus \cdots$ is generated by M_n , so $M_{n+i} = I^i M_n$ for $i \ge 0$, so J is stable.

Conversely, assume J is I-stable. Then $M_{n+i} = I^{i}M_{n}$, some n, for all $i \ge 0$. Thus M^{*} is generated by the union of sets of generators for M_{0}, \ldots, M_{n} . D We can now prove the Artin-Rees Lemma:

Artin-Recs Lemma: let R be Noetherian,
$$I \subseteq R$$
 an ideal,
and $M' \subseteq M$ finitely generated R-modules. If
 $J: M = M_0 \supseteq M_1 \supseteq ...$

is
$$T$$
-stable, then so is
 $J': M' \supseteq M' \cap M, \supseteq ...$

Pf: Since I is f.g., R* is a f.g. R-algebra. Thus, by Hilbert basis, it's Noetherian (since it's a quotient of a poly ring over R).

Cor: W/ the same setup as above, set
$$M_m = I^m M \forall m$$
.
 \exists some n s.t. for all $i \ge n$, $(I^i M) \cap M' = I^{i-n} ((I^n M) \cap M')$
 $Pf: (I^i M) \cap M' = M_i \cap M' = I^{in} (M_n \cap M') = I^{i-n} ((I^n M) \cap M')$. D
 I
stability
of J'

Now we get this important result as an easy corollary: Knill intersection Theorem: Let R be Noetherian and IER an ideal. If M is a finitely generated R-module, then there is some reI s.t.

$$(I-r)\left(\bigcap_{j=1}^{\infty} I^{j}M\right) = O$$

Pf: let $M' = \bigcap_{d=1}^{n} I^{d}M \subseteq M$. M is f.g. over a Noetherian ring, so it is Noetherian. Thus M' is f.g., so we can apply Artin-Rees:

The corollary says that there's some n s.t.

$$(\mathbf{I}_{\mu\nu},\mathbf{W})\cup\mathbf{W}_{\tau}=\mathbf{I}((\mathbf{I}_{\mu},\mathbf{W})\cup\mathbf{W}_{\tau})$$

In this case, $M' \subseteq I^{n+1}M \subseteq I^nM$, so this becomes M' = IM'. We don't know that I is in the Jacobson radical, so we can't apply Nakayama, but we can apply a corollary of C-H that says $\exists r \in I$ s.t. (I-r)M' = O. D

Cor: If R is an integral domain or a local ving and
$$I \subsetneq R$$

a proper ideal, then $\bigcap_{i=1}^{\infty} I^i = 0$.

Pf: Set
$$M = R$$
 in the theorem. Then $M' = \bigcap I^{\dot{\sigma}}$, and the theorem says $(I - r)(\bigcap I^{\dot{\sigma}}) = 0$ for some $r \in T$.

If R is an integral domain, then since $l-r \neq 0$, Π^d must be O.

If R is local, then r is in the max'l ideal, so 1-r is a unit. Thus $\Pi I^{\dot{d}} = D$. Π

This has a geometric interpretation. Roughly, in the setting of the corollary, if a function vanishes along I to arbitrarily high order, then it's O.

If f I for all n>O, then f=O by KIT.

This can fail for a non integral domain:

$$E_{X}: R = \frac{k(x)}{(x^2 - x)}$$

Set $I = (\pi)$. Then $I^2 = (\pi^2) = (\pi)$, so $\pi \in \bigcap I^{\dot{d}}$. i.e. π vanishes to infinite order at the point corr. to (π) , but it's not zero, since it's honzero on the other point.